Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice

Yuguang Zhaoa,b, Yi Tanb,c, Junying Daid, Bing Lib,e, Luping Guoc, Jiwei Cuia, Guanjun Wanga, Xue Shif, Xiang Zhangf, Nicholas Mellenb, Wei Lia,*, Lu Caia,b,∗∗

a Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
b KCHRI, The Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA
c Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, China
d Liver and Gall Disease Hospital of Jilin Province, Changchun 130062, China
e Department of Nephrology, The Second Hospital of Jilin University, Changchun 130021, China
f Department of Chemistry, University of Louisville, Louisville, KY 40292, USA

* Corresponding author. Tel.: +86 431 88782974.
*∗ Corresponding author. Tel.: +502 8522214.
E-mail addresses: drweili@yahoo.com (W. Li), l0cai001@louisville.edu (L. Cai).

1. Introduction

Infertility is a common complication in diabetic men (Agbaje \textit{et al.}, 2007; Amaral \textit{et al.}, 2008), mainly due to the loss of germ cells by apoptotic cell death (Cai \textit{et al.}, 2000; Koh, 2007; Sainio-Pollanen \textit{et al.}, 1997). However, factors contributing to diabetic induction of testicular apoptosis have not been well described.

Zinc (Zn) is known as an essential trace element required for the maintenance of germ cells, the progression of spermatogenesis, and the regulation of sperm motility (Yamaguchi \textit{et al.}, 2009).

Zn is a cofactor in many enzymes and proteins involved in antioxidant defenses, electron transport, DNA repair and p53 protein expression (Song \textit{et al.}, 2009). Reportedly Zn deficiency induces oxidative stress (Ho \textit{et al.}, 2003; Oteiza \textit{et al.}, 1996; Song \textit{et al.}, 2009). Supplementation with Zn has shown to protect against a range of stress-induced testicular damage (Amaral \textit{et al.}, 2008; Ozturk \textit{et al.}, 2003). Oxidative stress occurs when overgeneration of reactive oxygen or nitrogen species (ROS and RNS) overwhelms antioxidant defenses or endogenous antioxidant defense is down-regulated. Oxidative stress induced by Zn deficiency is not only due to the increased generation of ROS and/or RNS, but also due to the impairment of antioxidant capacity (Oteiza \textit{et al.}, 1996; Yousef \textit{et al.}, 2002).

The transcription factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) regulates basal and inducible transcription of genes encoding protective molecules against various oxidative stresses.
In response to a range of oxidative and electrophilic stimuli including ROS and ROS, heavy metals, and certain disease processes, Nrf2 is activated and mediates the induction of a spectrum of cytoprotective proteins including phase II enzymes, such as catalase, NADPH:quinone oxidoreductase, and antioxidant proteins, such as heme oxygenase 1, through the antioxidant response element-dependent pathway. Nrf2 is broadly expressed in tissues and has been recognized to play a critical role in oxidative defense in the tests (Nakamura et al., 2010; Yang et al., 2008). Deletion of the Nrf2 gene was found to cause a frame- dependent testicular and epididymal oxidative stress, which disrupts spermatogenesis (Nakamura et al., 2010), suggesting a critical role for the transcription factor Nrf2 in preventing oxidative disruption of spermatogenesis.

P53 plays a critical role in spermatogenesis (Rotter et al., 1993; Yin et al., 1998), and promotes apoptosis, in response to a variety of oxidative stimuli, by transactivation of target genes and by transcription-independent mechanisms (Liu et al., 2007; Rotter et al., 1993; Yin et al., 1998). Wild-type p53 rapidly translocates to mitochondria in response to multiple death stimuli and physically interacts with anti-apoptotic Bcl proteins, induces Bak oligomerization, permeabilizes mitochondrial membranes, and rapidly induces cytochrome c release, leading to a mitochondria-dependent cell death cascade (Erster et al., 2004; Erster and Moll, 2004; Li et al., 2009).

P38 MAPK was also found to play a role in maintaining normal spermatogenesis (Ranawat and Bansal, 2009). P38 MAPK acts as one of the p53 up-stream activators in response to oxidative stress to induce p53-dependent and independent cell death pathways (Liu et al., 2010; Papoutsaki et al., 2005). Vera et al. reported that germ cell apoptosis was activated at the 5th day after GnRH antagonist treatment by p38 MAPK activation, followed by increased Bax/Bcl-2 ratio, cytochrome c release from mitochondria, and caspase activation (Vera et al., 2006).

In the present study, therefore, we examined the effects of Zn deficiency on diabetes-induced testicular apoptosis and associated mechanism changes. To this end, we treated mice with streptozotocin (STZ) to induce a type 1 diabetes model. Zn deficiency was induced by chronic treatment with Zn chelator, N,N,N′,N′-tetrakis (2-pyridylemethyl) ethylenediamine (TPEN), as used in other studies (Kabu et al., 2006; Yamaguchi et al., 2009). Diabetic mice were treated with and without TPEN for four months, and testicular cell death, oxidative stress and cell death signaling were examined.

2. Materials and methods

2.1. Animals

PVB mice were used for this study. All mice were housed in the University of Louisville Research Resources Center at 22 °C with a 12-h light/dark cycle and provided with free access to standard rodent chow and tap water. All animal procedures were approved by the Institutional Animal Care and Use Committee, which is certified by the American Association for Accreditation of Laboratory Animal Care.

2.2. STZ-induced diabetes and Zn depletion

Eight-week-old male mice were injected intraperitoneally with multiple low doses of STZ (Sigma, MO) at 50 mg/kg daily for 5 days to induce type 1 diabetes. Five days after the last injection of STZ, whole blood glucose obtained from mouse tail-vein was measured with a SureStep complete blood glucose monitor (LifeScan, CA). The blood glucose levels higher than 250 mg/dl were considered as diabetic. Once diabetes onset was detected, diabetic mice were injected intraperitoneally with TPEN (Sigma, MO) at 5 mg/kg daily for 4 months to chelate Zn. The selection of TPEN to chronically deplete intracellular Zn is based on several previous studies that have successfully used TPEN to eliminate Zn without significant systemic toxic effects (Kabu et al., 2006; Yamaguchi et al., 2009). At the time of sacrifice, two testes were harvested for the following histopathological and biochemical studies.

2.3. Measurement of testicular Zn levels

Zn levels in the testes were measured by an atomic absorption spectrometer using air-acetylene flame after tissue digestion by nitric acid as described previously (Cai et al., 2002a). By this assay, total Zn in the tissues including free Zn and protein-bound Zn were measured and expressed as μg/g wet tissue.

2.4. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay

Testis tissue was fixed in 10% formalin, embedded in paraffin and sectioned at 5 μm. The slides were stained for TUNEL with the ApopTag Peroxidase In Situ Apoptosis Detection Kit (Chemicon, CA, USA), as described in previous studies (Cai et al., 2000; Zhao et al., 2010). Briefly, each slide was deparaffinized and rehydrated, and treated with protease K (20 mg/ml) for 15 min. The endogenous peroxidase was inhibited with 3% hydrogen peroxide for 5 min, and then incubated with the TUNEL reaction mixture containing terminal deoxynucleotidyl transferase (TdT) and digoxigenin-11-dUTP for 1 h. The TdT reaction was carried out in a humidified chamber at 37 °C. Then 3,3-diaminobenzidine chromogen was applied. Hematoxylin was used as counterstaining. For negative control, TdT was omitted from the reaction mixture.

Apoptotic cell death was quantitatively analyzed by counting the TUNEL-positive cells selected randomly from ten seminiferous tubule’s cross-sections from each of the three slides for each mouse. The apoptotic cells were counted from spermatagonia, primary spermatocytes, secondary spermatocytes, but not spermatid and spermatozoa since total cells of the former can be easily identified for the quantification. Results were presented as TUNEL positive cells per 10^6 cells.

2.5. Western blotting

Western blots were performed according to our previous studies (Cai et al., 2002b). Briefly, testicular tissues were homogenized and fractionated on 10% SDS-PAGE gels, and proteins were transferred to a nitrocellulose membrane. The membrane was blocked with a 5% non-fat dried milk for 1 h, and incubated overnight at 4 °C with the following antibodies: anti-Bax, anti-Bcl-2, anti-phospho-p38 (Th180/Thyr182), anti-p38, anti-p53, anti-phospho-p53 (Ser15) (1:1000, Cell Signalling, MA), anti-CHOP (1:1000, Santa Cruz, CA), anti-caspase12 (1:1000, Exalpalca Biologicals, MA), anti-%-hydroxynonenal-Michael adducts (4-HNE, 1:2000, Calbiochem, CA), anti-3-nitrotyrosine (3-NT, 1:2000, Chemicon, CA), and anti-NF-κB (1:1000, Abcam, MA). After the unbound antibodies were removed with Tris-buffered saline (pH 7.2) containing 0.05% Tween 20, membranes were incubated with the secondary antibody for 1 h at room temperature. Antibody–antibody complexes were visualized with an enhanced chemiluminescence detection kit (Thermo Scientific, IL). To determine loading, blots were stripped using stripping buffer (Sigma-Gen Lab, MD) and reprobed for β-actin. Quantitative densitometry was performed on the identified bands by using a computer-based measurement system, as employed in previous studies (Cai et al., 2002b).

2.6. Statistical analysis

Data were collected from repeated experiments and were presented as mean ± SD. One-way ANOVA was used to determine if differences exist and if so, a post hoc Tukey’s test was used for analysis for the difference between groups, with
Fig. 2. Diabetes- and TPEN-induced testicular apoptosis. Diabetes was induced with MLD-STZ and treated with and without TPEN at 5 mg/kg daily for four months. Testicular apoptotic cell death was examined by TUNEL staining (A) and TUNEL-positive cells were quantitatively analyzed (B). The expression of Bax and Bcl-2 were detected by Western blotting assay (C), for which the ratio of Bax/Bcl-2 was present. Data are presented as mean ± SD (n = 6 at least in each group). DM: diabetes. *P < 0.05 vs. control group and #P < 0.05 vs. DM.

3. Results

3.1. TPEN-induced testicular Zn deficiency

Normal FVB mice, chronically treated with TPEN at 5 mg/kg daily for 4 months were found to have significantly lower testicular Zn levels than control (Fig. 1). It is noteworthy that diabetes also significantly decreased testicular Zn levels, and TPEN-treated diabetic animals showed the lowest testicular Zn levels among the groups (Fig. 1).

3.2. Diabetes- and TPEN-induced testicular apoptosis

A significant induction of testicular apoptosis in diabetic mice at 4 months after diabetes onset, examined by TUNEL staining (Fig. 2A and B), was found along with a significant increase in Bax/Bcl-2 ratio as an index of mitochondrial cell death pathway.
Diabetes is a global health problem due to its serious complications. The number of young patients with either type 1 or type 2 diabetes is increasing dramatically (Dahlquist and Kallen, 2005; Mayer-Davis et al., 2009). Therefore, infertility of these young diabetic patients has become a concern (Agbaje et al., 2007; Amaral et al., 2008). We have reported the significant induction of apoptotic cell death in the testes of diabetic rats as early as 2000 (Cai et al., 2008). We have found a significant increase in Bax/Bcl-2 ratio in the diabetic testis (Fig. 2C). This notion is further supported by the present study, in which we found a significant increase in Bax/Bcl-2 ratio in the diabetic testis (Fig. 2C).

In a recent study, we demonstrated that oxidative stress is a major cause for diabetic loss of male germ cells since diabetic induction of testicular apoptotic cell death were prevented by treatment with antioxidant N-acetyl-L-cysteine or low-level ionizing radiation that induces up-regulation of testicular antioxidants (Zhao et al., 2010). This notion is further supported by the present study, in which we found a significant increase in Bax/Bcl-2 ratio in the diabetic testis (Fig. 2C).

In the next study, we demonstrated that diabetes significantly decreased testicular Nrf2 expression (Fig. 4C). Although chronic treatment of normal mice with TPEN did not decrease testicular Nrf2 expression, chronic treatment of diabetic mice with TPEN significantly aggravated diabetes-decreased Nrf2 expression (Fig. 4C). This study confirms the diabetic induction of oxidative stress, mirrored by increased oxidative and nitrosative damage and depressed antioxidant Nrf2 expression.

3.4. Diabetes- and TPEN-induced activation of p53 and p38 MAPK

Both p53 and p38 MAPK play important roles in induction of testicular apoptosis by various oxidative stresses (Erster et al., 2004; Erster and Moll, 2004; Li et al., 2009). Therefore, we examined the status of testicular p53 and p38 MAPK activation under diabetic conditions with and without chronic TPEN treatment. A significant increase in p53 activation in the testes of either diabetic mice or TPEN-treated normal mice was found (Fig. 5A). Chronic treatment of diabetic mice with TPEN significantly enhanced diabetes-incresed p53 activation. Similarly, phosphorylation of p38 MAPK was increased in the testes of diabetic or TPEN-treated non-diabetic mice (Fig. 5B). Chronic TPEN treatment of diabetic mice also significantly enhanced diabetes-induced p38 phosphorylation (Fig. 5B).

4. Discussion

Diabetes is a global health problem due to its serious complications. The number of young patients with either type 1 or type 2 diabetes is increasing dramatically (Dahlquist and Kallen, 2005; Mayer-Davis et al., 2009). Therefore, infertility of these young diabetic patients has become a concern (Agbaje et al., 2007; Amaral et al., 2008). We have reported the significant induction of apoptotic cell death in the testes of diabetic rats as early as 2000 (Cai et al., 2000), which has been considered as the major cause of the infertility for the men with diabetes. For diabetes-induced testicular apoptotic cell death, a mitochondria-dependent pathway was found to predominate (Amaral et al., 2009; Koh, 2007; Zhao et al., 2010). This notion is further supported by the present study, in which we found a significant increase in Bax/Bcl-2 ratio in the diabetic testis (Fig. 2C).

In a recent study, we demonstrated that oxidative stress is a major cause for diabetic loss of male germ cells since diabetic induction of testicular apoptotic cell death were prevented by treatment with antioxidant N-acetyl-L-cysteine or low-level ionizing radiation that induces up-regulation of testicular antioxidants (Zhao et al., 2010). Consistent with this finding, we observed an induction of oxidative stress and damage in the diabetic testis, reflected by increased 4-HNE contents as lipid peroxidation and 3-NT accumulation as protein nitration (Fig. 4A and B).

One of the novel findings in the present study is the diabetic down-regulation of Nrf2 in the testis (Fig. 4C). Nrf2 has been found to play a critical role in oxidative defense in testis (Nakamura et al., 2010; Yang et al., 2008). The significant down-regulation of Nrf2 may explain why multiple antioxidant expressions in diabetic testis were significantly down-regulated (Zhao et al., 2010). Based on our knowledge the present study is the first to show down-regulation
of testicular Nrf2 in diabetic mice. As an adaptive mechanism, Nrf2 is quickly up-regulated in the cells and tissues in response to various stresses, but is down-regulated in cells or tissue exposed to an overwhelming or long-lasting oxidative stress. For instance, low and moderate doses hydrogen peroxide exposure of rat pulmonary microvascular endothelial cells led to nuclear accumulation of Nrf2, increased activity of transcription regulation and up-regulation of antioxidant response element (ARE)-mediated gene expression. In contrast, high doses of hydrogen peroxide exposure led to the nuclear exclusion of Nrf2, decreased activity transcription regulation and down-regulation of ARE-mediated gene expression (Ning et al., 2010). Similarly, rats with chronic renal failure caused by 5/6 nephrectomy exhibited significant increases in oxidative stress and inflammation in the remnant kidney, in which Nrf2 function was mildly reduced at 6 weeks and markedly reduced at 12 weeks after nephrectomy. The products of Nrf2 target genes [catalase, superoxide dismutase, glutathione peroxidase, heme oxygenase-1, NAD(P)H quinone oxidoreductase, and glutamate-cysteine ligase] were all significantly diminished at 12 weeks (Kim and Vaziri, 2010). In addition, acute cigarette smoke exposure led to Nrf2 activation in human macrophages, but Nrf2 expression was significantly decreased in pulmonary macrophages from smokers with chronic exposure to cigarettes (Suzuki et al., 2008). Consistent with these studies, we have demonstrated the increase in Nrf2 in the heart of diabetic mice at 2 weeks after hyperglycemia (He et al., 2009), and decrease in the testes of diabetic mice at 4 months after hyperglycemia (Fig. 4C). As outlined in Fig. 6, therefore, we assume that down-regulation of Nrf2 plays a critical role in the development of diabetic oxidative stress, which induces oxidative damage and activates cell death pathways, in the testes of diabetic mice.

In the present study, we have demonstrated p53 activation in the testes of diabetic mice and non-diabetic mice with Zn deficiency (Fig. 5A), which is consistent with previous observation in other cells and tissues (Corniola et al., 2008; Ho et al., 2003). However, we demonstrate, for the first time, that Zn deficiency significantly enhances diabetic activation of p53 in the testis (Fig. 5A). The synergistic effects of diabetes and Zn deficiency on testicular oxidative stress and p53 activation are predictable since we found
that either of diabetes or Zn deficiency significantly induces these effects. However, it is not always the case that predicted synergistic effects for any two oxidative stressors actually are observed. For instance, either diabetes or ionizing radiation is an inducer for renal inflammation and oxidative stress, but diabetic mice treated with repeated exposure to ionizing radiation showed a significant decrease in renal inflammation and oxidative stress compared to diabetes alone (Zhang et al., 2009). Similar to the changes of p53, p38 MAPK was also activated in the testis of diabetic and TPEN-treated normal mice, and Zn deficiency further enhanced diabetic activation of p38 MAPK (Fig. 5B). Therefore, we assume that diabetic activation of p38 MAPK may be involved in induction of testicular apoptotic cell death that is mediated by either p53-dependent mitochondrial cell death pathway or p53-independent cell death pathway, as outlined in Fig. 6.

Interestingly, chronic depletion of Zn does not affect ER stress-related testicular cell death, examined by CHOP and cleaved caspase-12 (Fig. 3), although diabetes induced both mitochondrial- and ER stress-dependent cell death in the testes (Figs. 2 and 3). Therefore, we assumed that diabetic induction of ER stress and associated apoptotic cell death is independent of oxidative stress, as outlined in Fig. 6.

In summary, since Zn plays important role in maintaining normal spermatogenesis and protecting the testis against oxidative damage, we have investigated for the first time whether Zn deficiency affects diabetic induction of testicular oxidative damage and cell death. We found that diabetes significantly induces testicular oxidative stress and damage, along with the activation of p38 MAPK and p53 signaling and mitochondria-related apoptotic cell death. In addition, diabetes also induces testicular ER stress and associated cell death. Zn deficiency does not affect diabetic induction of ER stress and associated cell death, but Zn deficiency significantly enhances diabetic effects on oxidative stress and damage, mitochondrial cell death and associated p38 MAPK and p53 signaling. Because approximately 12% of Americans do not consume the estimated average requirement for Zn and could be at risk for marginal Zn deficiency (Sandstead et al., 2008; Schneider et al., 2007), this study highlights the importance of proper Zn intake in diabetic patients, which may prevent or delay diabetic complications, including reproductive system damage.

Conflict of interest statement

None declared.

Acknowledgements

This study was supported in part by Career Development Award from ADA (05-07-CD-02 to LC), a 50101 project from the First Hospital of Jilin University (To LC), and a Starting-Up Fund for Chinese-American Research Institute for Diabetic Complications from Wenzhou Medical College (to LC & YT). Y. Zhao is a recipient of
Scholarship under State Scholarship Fund from China Scholarship Council.

References

He, X., Kan, H., Cai, L., Ma, Q., 2009. Nrf2 is critical in defense against high glucose-induced oxidative damage in cardiomyocytes. J. Mol. Cell Cardiol. 46, 47–58.

