BELLARMINE UNIVERSITY

Overview

Analysis of the Math in Practice curriculum revealed that it aligns with multiple key best practices for effective mathematics education

- Activation of and connection to prior knowledge (NCTM, 2014; Van de Walle, Karp, \& Bay-Williams, 2016)
- Creating and interacting with models and visual representations (Woodward et al., 2012) and use of varied representations (Goldin, 2003)
- Higher-order questions that stimulate thinking (Marzano, Pickering, \& Pollock, 2001)
- Engaging students in productive math talk (Stein \& Smith, 2011)
- Concrete-Representational-Abstract instruction Agrawal \& Morin, 2016)
- Students generate story problems to represent the equation of interest (Drake \& Barlow, 2007; Whitin \& Whitin, 2008)

References

Agrawal, J., \& Morin, L.L. (2016). Evidence-based practices: Applications of concrete-representational abstract framework across Disabilities Research \& Practice, 3l(1), 34-44.
Drake, J. \& Barlow, A. (2007). Assessing students' level of understanding multiplication through problem writing. Teaching Children Mathematics, 14(5), 272-277.

Goldin, G. (2003). Representation in school mathematics: A unifying research perspective. In J. Kilpatrick, W.G. Martin, \& D. Schifter (Eds.) A Research Companion to Principles and Standards for Schoo
Mathematics (pp. 275-285). Reston, VA: NCTM.

Marzano, R.J., Pickering, D.J., \& Pollock, J.E. (2001). Classroom Instruction that Works: Research-Based Strategies for Increasing Student Achievement. Alexandria, VA: Association for Supervision and Curriculum Development.

National Council of Teachers of Mathematics (NCTM) (2014). Principles to Actions: Ensuring Mathematics Success for All. Reston, vA: NCTM

Stein, M.K., \& Smith, M.S. (2011). 5 Practices for Orchestrating Productive Mathematics Discussion. Reston, VA and Thousand Oaks, CA: NCTM and Corwin Press.
Van de Walle, J.A., Karp, K.S., Bay-Williams, J.M. (2016). Elementary and middle school mathematics: Teaching developmentally. Upper Saddle River, NJ: Pearson.
Whitin, P., \& Whitin, D. (2008). Learning to solve problems in the primary grades. Teaching Children Mathematics 14(7), 426-432.
Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., \& Ogbuehi, P. (2012). Improving (NCEE 2012-4055). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.

Exploring the Instructional Progression

Activating \& Building on Prior Knowledge

At the beginning of the lesson, students play a game to revisit multiplying by multiples of 10 , a skill that provides the foundation for multiplication with a 2 digit factor.
Next, students extend the area model they used in third grade to multiply single digit factors by a 2 digit factor.

Models and Visual Representations

First students use concrete models like base-ten blocks to represent a multiplication problem like 6 x 12 to understand that 6 groups of 12 is the same as 6 groups of 10 and 6 groups of 2:

6 groups of 12

6 groups of 10 \& 6 groups of 2
Next, students use grid paper to show a single digit multiplication problem like 6×8 with an area model, then share with their partners and discuss:

Then students use grid paper to show 6×12 with an area model, then discuss with their partners:

Guiding questions

How did you find the product? (might have counted squares, but may have used other strategies like 6×10 and 6×2)
If students broke apart the factor, discuss their thinking. If not, prompt them to explain a strategy to use if you forget a multiplication fact as a way to guide them to think about breaking a factor apart.
Is there a way to break apart 6×12 to make it easier to solve? (Partners discuss)
Probe further:
Why would you break apart the 12?
Which way will breaking apart the 12 make it easiest for you to solve 6×12 ?

Flexible Strategies

Various ways to decompose 12 to make it easier to multiply 6 by 12 :

Increasing the Level of Abstraction

Next, larger numbers are used to minimize drawing and counting of individual unit squares and problems are presented in the context of a story:

A bookcase has 5 shelves. There are 27 books on each shelf. How many books total are in the bookcase? Make an area model to help solve the problem.

Guiding questions:
Is there a way to break apart 27 to make the problem 5×27 easier to solve?
Why did breaking apart 27 the way you did make it easier to solve the problem?
Can you think of another way to break apart 27?
5×27

10	10	
$\begin{gathered} 5 \times 10= \\ 50 \end{gathered}$	$\begin{gathered} 5 \times 10= \\ 50 \end{gathered}$	$\begin{gathered} 5 \times 7= \\ 35 \end{gathered}$

Once students understand decomposition, they can solve problems without the rectangle to guide them

$27=20+7$	$27=10+10+7$
$5 \times 20=100$	$5 \times 10=50$
$5 \times 7=\frac{35}{135}$	$5 \times 10=50$
$5 \times 7=\frac{35}{135}$	

Generating Relevant Story Problems

Students work collaboratively using chart paper to create multiple real-world examples to represent a problem. This is a great wrap up to the unit and assists in reviewing prior to assessment.

Sammons, K.B., O’Connell, S., SanGiovanni, J. (2016). Math in practice: Teaching fourth-grade math Portsmouth, NH: Heinemann

